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Abstract Introduction: Assessing cognitive and functional changes at the early stage of Alzheimer’s disease
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(AD) and detecting treatment effects in clinical trials for early AD are challenging.
Methods: Under the assumption that transformed versions of the Mini–Mental State Examination,
the Clinical Dementia Rating Scale–Sum of Boxes, and the Alzheimer’s Disease Assessment
Scale–Cognitive Subscale tests’/components’ scores are from a multivariate linear mixed-effects
model, we calculated the sample sizes required to detect treatment effects on the annual rates of
change in these three components in clinical trials for participants with mild cognitive impairment.
Results: Our results suggest that a large number of participants would be required to detect a clin-
ically meaningful treatment effect in a population with preclinical or prodromal Alzheimer’s disease.
We found that the transformed Mini–Mental State Examination is more sensitive for detecting treat-
ment effects in early AD than the transformed Clinical Dementia Rating Scale–Sum of Boxes and
Alzheimer’s Disease Assessment Scale–Cognitive Subscale. The use of optimal weights to construct
powerful test statistics or sensitive composite scores/endpoints can reduce the required sample sizes
needed for clinical trials.
Conclusion: Consideration of the multivariate/joint distribution of components’ scores rather than
the distribution of a single composite score when designing clinical trials can lead to an increase
in power and reduced sample sizes for detecting treatment effects in clinical trials for early AD.
� 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Much effort has been devoted to developing disease-
modifying treatments that intervene in the pathobiologic pro-
reparation of this article were obtained from the Alz-
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cesses involved in the early stage of Alzheimer’s disease
(AD). Any therapy that is effective at treating this earlymani-
festation of the dementia processmay provide an opportunity
for managing the disease while patient function is relatively
preserved [1]. Standard instruments used to quantify cogni-
tive and functional decline in AD are relatively insensitive
to the changes at early AD [2]. This raises challenges for as-
sessing the early changes in cognition and function across the
spectrum of AD [3] and makes detecting treatment effects in
clinical trials for early AD even harder [2].

Power analysis is standard when designing clinical trials
for detecting treatment effects. Ard et al. [4] provide a
comprehensive review for clinical trials in AD. Misalign-
ment of the power analysis can lead to possible errors in
eimer’s Association. This is an open access article under the CC BY license
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decisions regarding sample size. Too large samples may
waste time, resources, and money and may unnecessarily
expose some participants to inferior treatment if a treatment
could have been shown to be more effective with fewer par-
ticipants. Significant underestimation of the sample size may
be a waste of time as it would unlikely lead to conclusive
findings and therefore be unfair to all participants taking
part in the trial. In this article, we are interested in the po-
wer/sample size to detect the treatment effects on the
component scores in clinical trials for early AD.

In the literature of early AD, many researchers have used
composite scores as single endpoints for performing power
analysis [4]. A composite score is typically a linear combi-
nation of the scores of sensitive instruments. It provides a
univariate summary of the component scores, avoids the
multiple-hypothesis testing problem when each component
score is considered separately, and reduces the impact of
measurement error [5]. Furthermore, it may be more sensi-
tive to the cognitive and functional decline than its separate
components [6].

The construction of a composite score involves the selec-
tion and weighting of the component scores. Typically, the
selection of the component scores may be based on a broad
literature review regarding sensitivity to decline of candidate
components [7], with equal weighting tending to be applied,
possibly naively, to the chosen components. However, more
statistically driven approaches can be used to derive the
weights to construct more sensitive composite scores
[2,6,8–12].

We therefore classify the statistical strategies used for the
construction of a composite score into two major classes.
The first is focused principally on selecting the most infor-
mative composite components and using prespecified
weights not derived from statistical considerations; for
example, Raghavan et al. [8] identify the informative
component instruments based on standardized mean of 2-
year change from baseline for a mild cognitive impairment
(MCI) cohort and summed them to create a new composite
measure. The other is focused on “optimizing” the weights
assigned to component scores based on an appropriate opti-
mality criterion and is therefore more data driven; for
example, some previous proposals find composite weights,
which are sensitive to the clinical decline, by fitting linear
mixed-effect models (LMMs) to the longitudinal composite
scores [2,6,9]. Xiong et al. [6] propose composite weights
that maximize the probability of observing a decline in
one participant over a unit interval of time. Their weights
can be considered as a special case of the composite weights
proposed by Ard et al., who use the power to detect the time
effect in a clinical trial as the criterion and obtain the compo-
nent weights by maximizing this criterion [2]. Ard et al.’s
approach is applied to construct a composite atrophy index
[9]. Another approach within this class is to base the estima-
tion of the composite weight on a criterion that looks at the
mean to standard deviation ratio of change over time [10,11].
Wang et al. [12] propose another composite score construct
FLA 5.4.0 DTD � TRCI94_proof �
by using a linear clinical decline equation to select and re-
weight the component scores simultaneously.

In general, using composite scores as single endpointsmay
lose information to detect the changes in components [3]; for
example, a large change in one component can be masked by
small changes on other component scores. Data-driven com-
posite scores have been further criticized [7]. Firstly, they
may lose clinical interpretation. It is possible that a clinically
meaningful component score has small weights in a data-
driven composite score [7]. In addition, they may not be
consistent across different data sets. Donohue et al. [7] apply
cross-validation to quantify the out-of-sample performance
of optimal composite scores and conclude that the overall per-
formance of the optimal composite scores is worse than those
composite scores derived without optimization.

A limited amount of the literature inADhas considered po-
wer analysis with multiple endpoints, although multiple end-
points are commonplace inAD.Under the assumption that the
component scores are jointly from a multivariate linear
mixed-effectsmodel (MLMM),we compare three approaches
with regard to their power to detect the treatment effects on
component scores. Two of them are with multiple endpoints,
whereas the other is with a single-composite endpoint.
2. Methods

2.1. MLMM for component scores

Mixed-effect models are from a class of useful statistical
models for analyzing longitudinal data [13]. They allow a
subset of the regression parameters (random effects) to
vary randomly between participants and thereby charac-
terize the natural heterogeneity in the target population in
these parameters. Fixed effects are used to refer regression
parameters, which are fixed but unknown and need to be esti-
mated.

Assuming that all possible covariates are balanced (as
would be assumed in a clinical trial through randomization),
we model the component scores using an MLMM with a
random intercept, fixed time, and time by treatment interac-
tion effects. (The addition of further covariates can be easily
incorporated if deemed necessary.) Such a model is able to
simultaneously characterize the correlations between the
component scores at each time t and the correlations across
time for each component score.

Let Yntj be the j-th component score of the n-th participant
at visit time t, where n5 1,.,N, t5 1,.,Tn, and j5 1,.,J.
Here, the number of visits Tn is a positive integer depending
on the n-th participant, and the number of component scores
J is prespecified. We use a linear function to link the compo-
nent scores with the mixed effects

Yntj5bj01gj!ðTreatment!TimeÞ1bj2!Time1bnj1εntj;

where gj is the j-th component treatment effect, bnj is the
random intercept that is unique to the j-th component score
24 May 2017 � 2:51 pm � ce
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of the n-th participant, and εntj is the random error of the n-th
participant on the j-th component score at time t. For each n,
let bn 5 (bn1,.,bnJ)

T independently follow a multivariate
normal distribution with a mean vector 0 and a covariance
matrix

P
b. Here, for any matrix or vector A, the matrix AT

is the transpose of A. For each n and t, further let
εnt5ðεnt1;.; εntJÞT independently follow a multivariate
normal distribution with the mean vector 0 and the covari-
ance matrix

P
ε
. For each n and t, the error εnt and the

random effects bn are independent.
For each participant n and time t, the covariance matrixP
ε
characterizes the correlation structure between the

component scores Ynt1,.,YntJ. For each participant n, the
component scores Ynt5 (Ynt1,.,YntJ)

T, t5 1,.,Tn, are inde-
pendent of each other through time conditional on the
random effect bn, but would be correlated marginally.

We can link the LMM for the composite scores to the

MLMM for the components by letting Cnt5
PJ

j51wjYntj,

a05
PJ

j51wjbj0, gw5
PJ

j51wjgj, a25
PJ

j51wjbj2,

an5
PJ

j51wjbnj, and dnt5
PJ

j51wjεntj, where w5 (w1,.,wJ)
T

is the vector of weights for the composite score [2]. The
LMM for the composite score of the n-th participant at time t
is therefore

Cnt5a01gw!ðTreatment!TimeÞ1a2!Time1an1dnt;

where gw is the treatment effect on composite scores, and for
each n, the random intercept, an, follows a normal distribu-
tion with mean 0 and variance s2a5wT

P
bw, and for each n

and t, the random error, dnt, follows a normal distribution
with mean 0 and variance s2d5wT

P
ε
w.
Table 1

Summary of the three-hypothesis testing formulations to detect treatment

effects

Endpoints Multivariate Multivariate Single composite

Statistical model MLMM MLMM LMM

Null hypothesis g50
PJ

j51wjgj50 gw50

Clinical

interpretation

Component

treatment

effects

Composite

treatment

effect

Treatment effect

on composite

scores

Test statistic XJ XJC(w) XC(w)

Null distribution c2
J c2

1 c2
1

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396
2.2. Power analysis–hypothesis testing formulations

To detect the treatment effects on component scores, we
consider three-hypothesis testing problems and their associ-
ated test statistics. Rejecting any of the null hypotheses sug-
gests statistically significant component treatment effects.

The first hypothesis testing problem is to test the null hy-
pothesis of no treatment effect in any of the components
against the alternative that there is at least one non-zero
treatment effect:

H0 : g50 vs HA : gs0;

where g5ðg1;.;gJÞT is the J-dimensional vector of treat-
ment effects. The Wald statistic XJ5bgTP21

g bg can be used,
where bg is the maximum likelihood estimator (MLE) of g
under the assumption of known covariance matrices for bn
and εnt, and

P
g is the covariance matrix of bg. It follows

that under the null hypothesis of no treatment effect for
any of the components that the Wald test statistic will be
distributed as a c2 distribution with J degrees of freedom, c2

J .
The second hypothesis testing problem considered is for

the composite treatment effect, defined as a linear combina-
tion of the component treatment effects induced by the
FLA 5.4.0 DTD � TRCI94_proof �
weights w 5 (w1,.,wJ)
T. Here, we test the null hypothesis

of no composite treatment effect versus the alternative of a
composite treatment effect. That is,

H0
0 :

XJ

j51

wjgj50 vs H 0
A :

XJ

j51

wjgjs0:

TheWald statistic, here, isXJCðwÞ5ðwT
P

gwÞ21ðwTbgÞ2,
which is distributed as c2

1 under the null, H
0
0.

The last hypothesis testing problem considers the case in
which composite scores are used as single endpoints. It aims
to test a single treatment effect on the composite scores

H00
0 : gw50 vs H 00

A : gws0:

Given the variances s2a and s2d, let bgw be the MLE of gw

and s2g be its variance. We can use the Wald statistic
XCðwÞ5s22

g bg2
w, which follows the c2

1 distribution under
H00

0, to test for this type of treatment effect.
The vector of weights w has different meanings under the

last two hypotheses testing situations. The weights w are on
the component treatment effects in the second, whereas the
weights w reweight the component scores in the third. These
testing approaches are equivalent only in the very special
case of a linear link function, as is assumed in our setting.

Table 1 summarizes these three-hypothesis testing prob-
lem formulations. Under an alternative model, all the test
statistics follow a noncentral c2 distribution and thereby
have power to reject the associated null hypothesis. Howev-
er, using less powerful test statistics will lead to larger sam-
ple sizes, which may be judged unethical. In the
Supplementary document, we prove that for any given
weights w, the test statistic XJC(w) is no worse with regards
to power thanXC(w). The test statisticXJ does not uniformly
outperform either XJC(w) or XC(w) over the range of w.
2.3. Power analysis–deriving the parameters required
from analysis of MCI participants in Alzheimer’s Disease
Neuroimaging Initiative

For illustration, we conduct a power analysis for a two-
arm randomized AD clinical trial with equal allocation prob-
abilities. The component scores consist of the Mini–Mental
State Examination (MMSE), the Clinical Dementia Rating
24 May 2017 � 2:51 pm � ce
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Scale-Sum of Boxes (CDR-SB), and the Alzheimer’s Dis-
ease Assessment Scale–Cognition Subscale (ADAS-11)
scores. We use data extracted from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.
ucla.ca) to inform the specification of the various parameters
required to perform the power analysis. This data set com-
prises 927 participants who are at MCI at baseline. The
MMSE, the CDR-SB, and the ADAS-11 are recorded bian-
nually for each participant over a total follow-up period of
10 years. To more closely satisfy the normality assumptions
for the components in light of potential ceiling effects, we
apply the Box-Cox transformation to the data and then re-
scaled them by their baseline standard deviation; see the sup-
plementary document for details (Supplementary Material).
The transformations applied are such that higher values of
the transformed components indicate worse cognitive func-
tioning.

We fit the MLMM to the three component scores; see the
Supplementary document for details on how estimates of the
rate of change parameters and the appropriate covariance
structures necessary for us to perform the power analysis
were obtained. The R function mlmmm.em() from the
mlmmm package [14] was used to compute these estimates.
The estimated annual rates of change on the transformed
MMSE, the transformed CDR-SB, and the transformed
ADAS-11 are 0.079 (95% confidence interval [CI]: 0.064,
0.095), 0.061 (95% CI: 0.045, 0.077), and 0.055 (95% CI:
0.040, 0.069), respectively. These annual rates of change
correspond to small rates of change on the original untrans-
formed scale and suggest that there is limited cognitive
decline in those with MCI over the follow-up period. The
estimated covariance matrices are

bS
ε
5

2
4 0:56 0:07 0:09
0:07 0:57 0:06
0:09 0:06 0:44

3
5 and bSb5

2
4 0:58 0:30 0:48
0:30 0:71 0:37
0:48 0:37 0:77

3
5:

We consider various designs for our clinical trial based on
choosing different follow-up periods (i.e., 2, 3, 4, 5, and
6 years) and assuming that it is of interest to detect mini-
mally clinically meaningful treatment effects corresponding
to 25% reductions in the annual rates of change in the
MMSE, CDR-SB, and ADAS-11 (transformed). These
25% reductions here also correspond approximately to
25% improvements in the treated versus control arms, if
the components were considered on their original scales of
measurement.
The optimal weights for XJC(w) and XC(w) in each trial duration

Weights Component

Trial duration

2 years 3 years 4 years 5 years 6 years

w�
JC MMSE 0.7670 0.7641 0.7576 0.7511 0.7451

CDR-SB 0.4961 0.4958 0.4964 0.4971 0.4978

ADAS-11 0.4069 0.4128 0.4238 0.4344 0.4438

w�
C MMSE 0.7151 0.7104 0.7061 0.7026 0.6999

CDR-SB 0.5052 0.5050 0.5048 0.5046 0.5044

ADAS-11 0.4832 0.4902 0.4966 0.5017 0.5057

520

521

522

523

524

525

526

527

528

529

530
2.4. Power analysis–specifying the weights

We compare various weights for XJC(w) and XC(w)
(optimal or otherwise) that can be used when performing a
power analysis for the clinical trial designs mentioned in
the early subsection. All the considered weight vectors are
normalized by

PJ
j51w

2
j51. The following weighting strate-

gies are considered:
FLA 5.4.0 DTD � TRCI94_proof � 2
1 The equal weights vector wZ5ð321=2; 321=2; 321=2ÞT
assumes that the component treatment effects are
equally important or that the treatment effect on the
average of the component scores is of interest. Typi-
cally this strategy may be adopted in practice and
therefore provides a benchmark to compare the other
weighting strategies.

2 The unit vectors w(1) 5 (1,0,0)T, w(2) 5 (0,1,0)T, and
w(3) 5 (0,0,1)T consider the situations in which either
only one of the component treatment effects or the
treatment effect on a single component is of interest.

3 The optimal weights vector for XJC(w), denoted by
w�
JC, is optimal in the sense thatXJCðw�

JCÞ has the great-
est power to reject H0

0 under a given alternative. In the
Supplementary document, it is proven that XJCðw�

JCÞ is
always more powerful than XJ in rejecting the associ-
ated null hypothesis given same conditions. The
optimal weights w�

JC are the eigenvector associated
with the largest eigenvalue of

P21
g g�g�T, which is pro-

portional to
P21

g g�, where g� is the treatment effect
vector under the alternative. In Table 2, we list the
optimal weights for XJC(w) for the different trial dura-
tion scenarios.

4 The optimal weights vector for XC(w), denoted by w�
C,

maximizes the power of XC(w) to detect the treatment
effects under a given alternative over all possible
normalized w; see the Supplementary document for
the algorithm to calculate w�

C. The composite score
induced byw�

C is themost sensitive for detecting a treat-
ment effect on the composite score.The optimalweights
w�
C for different trial scenarios are listed in Table 2.
3. Results

Table 3 presents the sample sizes required for each of the
aforementioned weighting specifications and under the
different trial duration scenarios when the statistical power
is specified at 80% and the significance level is set at 5%.
Also reported are the calculated sample sizes when each
component is considered separately for powering the trial,
and a Bonferroni correction is applied. Here, the maximum
of the three calculated sample sizes based on the three com-
ponents is chosen as the sample size to be specified for the
trial.
4 May 2017 � 2:51 pm � ce
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From the table, we observe that the test statisticXJCðw�
JCÞ

gives the smallest sample sizes (numbers highlighted in
bold) for each of the clinical trial design scenarios consid-
ered. Moreover, we make the following points after exam-
ining Table 3.

A substantial number of participants may be required
when a trial for early AD only lasts for 2 years, under our as-
sumptions. We estimate that at least 17,000 participants
would need to be recruited in a 2-year AD trial in an MCI
population to have sufficient power (i.e., 80%) to detect a
25% reduction in the annual rate of change on each of the
transformed component scores. Recruitment of such
numbers may be infeasible for a 2-year duration clinical trial
in early AD with four biannual follow-up visits and even if
feasible failure rates could potentially be high for early
AD populations. Note that the required sample sizes will
decrease with increasing trial duration, assuming biannual
visits.

The required sample sizes to detect the treatment effect
on the transformed MMSE are much smaller than the ones
to detect the treatment effect on the transformed CDR-SB
or ADAS-11 (comparing w(1) rows to w(2) and w(3) rows in
Table 3). Let us consider a clinical trial of 3 years duration
as an example. The required sample sizes obtained by
XJC(w(1)) is 55.0% of the ones obtained by XJC(w(2)) and
54.6% of the ones obtained by XJC(w(3)). This implies that
the transformedMMSE is the more sensitivemeasure for de-
tecting a treatment effect for early AD than transformed
CDR-SB and the ADAS-11 measures [15-17].

The approaches that use the optimal weights could
require at least 60% fewer participants than the ones using
w(2) or w(3). In our analysis, the performances of XJC(w)
and XC(w) with wZ are comparable to the ones using the
optimal weights. This is a consequence of the estimated
Table 3

The sample sizes calculated by each approach with 80% statistical power

and 5% significance level by trial duration

Test statistic Weights

Trial duration

2 years 3 years 4 years 5 years 6 years

XJ - 23,714 7041 2983 1550 908

XJC(w) w(1) 24,934 7447 3192 1678 994

w(2) 45,259 13,548 5789 3030 1786

w(3) 45,844 13,635 5789 3014 1769

wZ 17,672 5242 2216 1149 672

w�
JC 17,072 5069 2148 1116 654

w�
C 17,139 5090 2156 1120 656

XC(w) w(1) 26,851 8059 3451 1809 1067

w(2) 46,524 13,929 5943 3105 1827

w(3) 47,654 14,189 6017 3126 1831

wZ 17,881 5306 2242 1162 679

w�
JC 17,625 5236 2214 1147 671

w�
C 17,549 5212 2205 1143 669

2 years 3 years 4 years 5 years 6 years

Bonferroni correction 63,563 18,926 8025 4170 2443

NOTE. Numbers given in bold indicates the test statistic XJCðw�
JCÞ that

gives the smallest sample sizes for each of the considered clinical trial

design scenarios.
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parameters obtained from the analysis of the ADNI data giv-
ing rise to optimal weights that are close to wZ (Table 2).
Comparable performances across these three statistics will
not in general be expected when using other component out-
comes.

The sample sizes calculated under XJC(w) are always
smaller than the ones calculated under XC(w) for fixed
weights, although the reduction may not be significant; for
example, there is a 3% reduction in sample sizes when
XJC(w) is used with w5w�

JC. Such gain in efficiency is ob-
tained by specifying the correlation structure among the
component scores in the MLMM.
4. Discussion

We have described three approaches for performing po-
wer analysis to detect treatment effects in clinical trials for
early AD. From our investigations, we found that jointly
modeling the component scores and then constructing sensi-
tive test statistics or composite scores based on optimal
weights will improve the efficiency of clinical trials. Under
our model assumptions, testing based on the optimal com-
posite treatment effect will lead to the smallest required sam-
ple sizes and therefore should be recommended when
powering clinical trials in AD if treatment effects on multi-
ple components are of interest.

We end the article with the following discussion points.
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4.1. Model assumptions

We assume that the component scores are jointly from an
MLMM. This may be too strong an assumption for
analyzing some cognitive and function scores in AD,
because the component scores usually are discrete with
strong ceiling or floor effects. Consider the CDR-SB as an
example. The CDR-SB is the sum of six component scores,
including the Memory Score, the Orientation Score, the
Judgement and Problem Solving Score, the Community Af-
fairs Score, the Home and Hobbies Score, and the Personal
Care Score. The component scores except the Personal
Care Score have the discrete range 0, 0.5, 1, 2, and 3,
whereas the Personal Care Score has the range 0, 1, 2, and
3. From the ADNI data, over 30% of individuals have 0 in
each component score of the CDR-SB, which would indicate
strong floor effects (zero-heavy data). Therefore, it may not
be appropriate to use an MLMM with CDR-SB on its orig-
inal scale or even after transformation as done in this article.
The use of other models, which take account of zero-heavy
data may be appropriate [18] for a comprehensive review.

In our power analysis results, we took the covariance
matrices of εnt and bn to be known when fitting the
MLMM. This allowed us to obtain explicit formulas for
theMLEs and their covariance, which enabled us to compare
the powers of the test statistics and calculate the optimal
composite scores. In practice, these covariance matrices
would need to be estimated. They may be obtained from
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previous investigations or through a pilot study. However,
note that without considering the variability in the estimated
covariance matrices, there would be a tendency to underes-
timate the required sample sizes. Monte Carlo studies can
be applied to obtain more accurate sample sizes [19]. How-
ever, these would require intensive computational work to
compute the optimal weights.

In the MLMM for component scores, it is assumed that,
for each n, the errors εnt, t5 1,.,Tn, are independent across
time. This implies that the time correlation of Ynt,
t 5 1,.,Tn, is induced only through the random intercepts
bn. This can be generalized so as to introduce the auto corre-
lations between εnt, t 5 1,.,Tn. Such generalization would
raise computational challenges, and a bespoke program
would be needed. (We were unable to find a statistical soft-
ware package that would allow us to fit this more generalized
model).

4.2. Wald statistics

The considered Wald statistics have power to detect the
component treatment effects, but they do not make distinc-
tion between beneficial effects and deleterious effects. How-
ever, because currently in early AD, they may be an
expectation that any treatment brought forward for confir-
matory testing in a phase III trial has undergone rigorous
assessment at phase II to ensure that it does not confer
harm, it may be of interest to investigate rejecting H0 under
the alternative that all the component treatment effects g are
non-negative. In this situation, theWald statisticXJ follows a
mixture of c2

p distribution, P5 0,.,J, where c2
0 distribution

is the distribution with mass 1 at point 0. In general, it is chal-
lenging to calculate theweights that combine the c2

p distribu-
tion, P 5 0,.,J, [20].

When the weights w in XJC(w) and XC(w) are non-
negative elementwise, we may modify the alternatives
against H0

0 and H00
0 to

H 0
A :

XJ

j51

wjgj.0

and

H 00
A : gw.0;

respectively. We can use the Z-statistics, X
1=2
JC ðwÞ and

X
1=2
C ðwÞ, for the one-sided tests. They follow the standard

normal distribution under their associated null hypothesis.
However, the elements of the optimal weights w�

JC and w�
C

may not always be non-negative.

4.3. Parameters necessary for powering clinical trials

It is crucial to obtain plausible values of the parameters
needed for the power analysis, including the annual change
rates, the covariance matrix of random effects, and the
covariance matrix of errors. These parameter values can be
informed from a pilot study or existing studies [21]; because
FLA 5.4.0 DTD � TRCI94_proof �
there always exists the concern whether the specified alter-
native truly represents the clinical trial target population ef-
fect of interest and how the variability of the alternatives will
affect the calculated sample sizes, sensitivity analysis is rec-
ommended [4]. McEvoy et.al. [22] compute 95% CIs on the
sample sizes through bootstrapping. We also present the
95% bootstrap CIs for the calculated sample sizes in our
Supplementary document.

The effect sizes must be determined based on rationale
and justification from theory and clinical experiences [4].
When the effect sizes are set to be the percentages of the
annual rate of change, they are approximately invariant to
the transformation on the component scores if the term
gj!ðTreatment!TimeÞ1bj2!Time in the MLMM is
around zero.

The derivation and use of optimal weights w�
JC and w�

C

here were for the clinical purpose of powering a trial. We
did not propose a new composite score to be used as an
endpoint but constructed the most powerful test statistics
with the optimal weightsw�

JC and the most sensitive compos-
ite score with the weights w�

C to detect treatment effects. We
further argued that no extra information or no further model
assumption than what is typically needed is required to
calculate them given the alternatives. Therefore, it is helpful
to compute and use the optimal weights in power analysis.
For other clinical purposes, the optimal weights w as defined
and clinically meaningful weights may conflict. In such sit-
uations, we suggest modifying the criterion for determining
the optimal weights to take account clinical meaningfulness.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture on constructing composite scores sensitive to
the early changes in cognition and function and for
detecting treatment effects in clinical trials for early
AD. Under the assumption that the component scores
are jointly from an MLMM, three approaches are
compared with regard to their power to detect treat-
ment effects. The authors calculate sample sizes
based on these three approaches.

2. Interpretation: Jointly modeling the component
scores and using data-driven optimal weights will
improve the efficiency of clinical trials for early AD.
Power analysis based on using the optimal composite
treatment effect requires the smallest sample sizes.

3. Future directions: It is required to studymore flexible
statistical models and develop associated software to
power a study for early AD.
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